

Closest Pairs

In 2 dimensions:

we have n points in a plane, our objective is to find the closest couple of points between all couples in the fastst time possible.

Notice that a naive approach whould be to test all possible couples, sort them by distance and then take the first element, resulting in a complexity of $O\left(n^{2}\right)$.we will show that there is a better approach.
let's begin drawing our points on the plan:

what we can do now is write all our points into one array $P=\left\{p_{1} \ldots p_{n}\right\}, p_{x} \in \mathbb{R}^{2}$, remember that we seek for $p_{a}, p_{b}:\left\|p_{a}-p_{b}\right\| \leq\left\|p_{c}-p_{d}\right\| \forall p_{c}, p_{d} \neq p_{a}, p_{b} ; p_{a}, p_{b}, p_{c}, p_{d} \in P$, so the couple with minimum distance.

Anstatz

we will use a Divide Et Impera algorithm, where we split into 2 parts:

Divide

we sort the points according to the x coordinate int 2 halves

$P=\{d, n, l, y, a, m, u, c, r, v, g, f, h, j, x, b, q, s, z, p, o, w, t, i, e, k\}$

Conquer

we can consider 3 cases for the couple we are searching:

- the 2 points are both on the left
- the 2 points are both on the right
- one point is on the left, the other on the right
what we want to do is taking the smaller distance in the 3 cases

Algorithm

```
Function ClosestPair(P)
    Let }n\mathrm{ be the number of points in set P.
    If n <= 3, compute the distance between each pair and return the smallest.
    Sort the points in P according to their x-coordinates, let's call this array Px.
    Sort the points in P according to their y-coordinates, let's call this array Py.
    Call the auxiliary function ClosestPairAux(Px, Py).
Function ClosestPairAux(Px, Py)
    Let }\textrm{n}\mathrm{ be the number of points in set P.
    If n <= 3, compute the distance between each pair and return the smallest.
    Find the midpoint Q of Px, divide Px into two subsets:
        Qx (points to the left of the midpoint)
        Rx (points to the right of the midpoint)
    Divide the Py into two subsets:
        Qy (points in Qx, sorted by y-coordinate)
        Ry (points in Rx, sorted by y-coordinate)
    d1 = ClosestPairAux(Qx, Qy) // recursive call on the left subset
    d2 = ClosestPairAux(Rx, Ry) // recursive call on the right subset
    d = min(d1, d2) // find the minimum distance
    Sy = points of Py that are within distance d from the midpoint Q.
    d3 = minimum distance of pairs in Sy.
    return min(d, d3)
```

$T(n)=2 T\left(\frac{N}{2}\right)+O(n \log n)+O(n \log n)=2 T\left(\frac{N}{2}\right)+O(n \log n)=O\left(n \log ^{2}(n)\right)$
let's consider the last part in closedSplitPairs: why do we iterate only 6 times?
the answer lives in this Conjecture: $|Q| \leq 6$, i.e. given a point and a distance δ we can show that there a maximum of 6 points with that distance form that point:

(b)

in higher dimensions

in the case of higher dimensions the splitting describes an hyperplane H with dimension $d-1$ and partition P according to the x coordinate of this hyperplane. This time the closest points are not contained in a square, but in an hyperspace distant δ in all dimensions from the cutting hyperplane. At this point we project all the points onto H and we get a $d-1$ dimensional closest pairs problem, then we can iterate until we reach our case in 2 dimensions

Function ClosestPair (P)

Let n be the number of points in set P.
For each dimension d in D, sort the points in P according to their d-th coordinate, let's call these arrays P1, P2, ..., PD. Call the auxiliary function ClosestPairAux(P1, P2, ..., PD, 1).

Function ClosestPairAux(P1, P2,, PD, current_dim)
Let n be the number of points in set P.
If $n<=3$, compute the distance between each pair and return the smallest.
Find the midpoint Q of P [current_dim], divide P [current_dim] into two subsets:
Qx (points to the left of the midpoint)
Rx (points to the right of the midpoint)
For each dimension d in D, divide the sorted list $P[d]$ into two subsets based on $Q:$
Qy (points in $Q x$, sorted by d-th coordinate)
Ry (points in $R x$, sorted by d-th coordinate)
d1 = ClosestPairAux (Q1, Q2, ..., QD, (current_dim \% D) + 1) // recursive call on the left subset
$\mathrm{d} 2=\mathrm{ClosestPairAux}(\mathrm{R} 1, \mathrm{R} 2, \ldots, \mathrm{RD},($ current_dim \% D) + 1) // recursive call on the right subset
d $=$ min(d1, d2) // find the minimum distance
$S y=$ points of P [current_dim] that are within distance d from the midpoint Q.
d3 = minimum distance of pairs in Sy considering all dimensions in a circular manner starting from (current_dim \% D) +1.
Return min(d, d3)

The new complexity becomes:
$T(n, d)=2 T\left(\frac{N}{2}, d\right)+O(n)+U(n, d-1)$,
where U is the complexity of finding the closest pairs in the $d-1$ sized problem
$U(n, d-1)=O\left(n l o g^{d-2} n\right)$,
it follows that: $T(n, d)=2 T\left(\frac{N}{2}, d\right)+O(n)+O\left(n l o g^{d-2} n\right)=O\left(n l o g^{d-1} n\right)$
it can be proven that if we build an hyperbox around a point we will discover that that box will contain a number of points in the order of $O\left(4^{d}\right)$

proof:

imagine we have a ball of radius $\frac{\delta}{2}$ into a box of size 2δ
$\operatorname{vol}(b o x)=(2 \delta)^{d}$
$\operatorname{vol}($ ball $)=$ const $\cdot\left(\frac{\delta}{2}\right)^{d}$
$\#$ ballsNonOverlapping $\leq \frac{\text { vol }(\text { box })}{\text { vol(ball })}=4^{d}$

Cool material

https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
https://itzsyboo.medium.com/algorithms-studynote-4-divide-and-conquer-closest-pair-49ba679ce3c7
https://stackoverflow.com/questions/15664962/explanation-of-these-seven-points-in-finding-the-closest-pair-of-points https://www.cs.ucdavis.edu/~bai/ECS122A/Notes/Closestpair.pdf

